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Abstract

This paper presents a comparative analysis of novel supervised fuzzy adaptive resonance theory (SF-ART), multilayer perceptron
(MLP) and competitive neural trees (CNeT) Networks over three pattern recognition problems. We have used two well-known patterns
(IRIS and Vowel data) and a biological data (hydrogen data) to evaluate and check SF-ART stability, reliability, learning speed and
computational load. The comparative tests with IRIS, Vowels and H2 data indicate that the SF-ART is capable to perform with a high
classification performance, high learning speed (elapsed time for learning around half second), and very low computational load com-
pared to the well-known neural networks such as MLP and CNeT which need minutes and seconds respectively to learn the training
material.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Supervised neural networks have remarkable perfor-
mance as practical tools and are effective for a broad range
of pattern discrimination and functional approximation
applications. As with any type of pattern classifier, the per-
formance of neural networks relies heavily on the availabil-
ity of a reprehensive set of training examples. In many
practical applications, however, the acquisition of such a
reprehensive data set is expensive and time consuming.
The development of a neural classifier, with higher perfor-
mance and speed, using minimum training set and fewer
learning cycles is difficult, but desirable.

During the past several years, a large number of artifi-
cial neural networks either supervised or unsupervised with
new structures/learning algorithms have been developed.
0167-8655/$ - see front matter � 2007 Elsevier B.V. All rights reserved.
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Some of them are adaptive resonance theory (ART), neural
trees, modified Hopfield, and learner ++ (Polikar et al.,
2001, 2002). Most of the existing methods perform remark-
ably well when optimized learning parameters, rich training
material and enough learning cycles are used.

Methods that do not deal with such important issues
may potentially give us misleading information. Another
limitation of the existing techniques concerns with their
degree of success in the case of validation test with new
data. Other limitations are their ease of hardware and/or
software implementation, their stability across different
patterns (generalization ability), and their suitability for
real-time applications as well as learning incrementally
from new data.

To have a reliable neural network with a high classifica-
tion performance, high learning speed, incremental learning
ability and easy to implement characteristics, we primarily
presented in (Akhbardeh, 2007) a two stage supervised neu-
ral network called supervised fuzzy adaptive resonance the-
ory (SF-ART). In this paper, we used two well-known
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Fig. 1. Competitive neural tree (CNeT) structure and its nodes: (a) the
tree with ellipsoids as its nodes; (b) A typical topology of a node. Each
node contains prototypes, counters and pointer.
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patterns (IRIS and vowel data) and a biological
data, hydrogen (H2) data, to evaluate more and check
its stability, reliability, learning speed and computational
load.

It must be mentioned that some multi-stage neural clas-
sifiers with two or more stages have been developed
recently to increase recognition performance and reliabil-
ity, but their structure is completely different from SF-
ART. Zhang (2006) in his doctoral thesis proposed a novel
cascade ensemble classifier system with a high recognition
performance on handwritten digits. Joao (2006) worked
on the impact of fusion strategies on classification errors
for large ensembles of classifiers. Although the training
time in the existing multistage learning algorithms is high,
multistage learning algorithms are able to improve the per-
formance of the classification in special applications (Kam
et al., 1994; Teredesai and Govindaraju, 2005; Xu et al.,
1992). However, these kinds of classifiers try to classify
input features based on processing and clustering data in
two stages. In the existing multi-stage classifiers, all the
stages use input features (and desired values in supervised
learning) to make the final decision.

Carpenter and Grossberg (1987, 1991, 1992) presented a
supervised real-time learning algorithms using ARTMAP
but those structures do not use output desired values for
learning under supervision. On the other hand, they are
supervised only to learn incrementally from new data,
while SF-ART uses output desired values in its structure
to learn under supervision and its is able to learn incremen-
tally because of ALT structure. Therefore, in this paper, we
have not compared SF-ART and ARTMAP. We have only
used well-known multilayer perceptron (MLP) (Haykin,
1998; Bishop, 2005) and a fast neural network called com-
petitive neural trees (CNeT) (Behnke and Karayiannis,
1996, 1998) to evaluate SF-ART performance over three
patter recognition problems (IRIS, Vowel and H2 data).

2. Structure of the applied neural networks

2.1. Multilayer perceptrons (MLP)

The most commonly used form of multilayer perceptron
(MLP) is a feed forward neural network trained with the
back propagation algorithm (Haykin, 1998). It is a super-
vised neural network and therefore requires a desired
response to be trained. It learns how to transform input
data into a desired response, and it is widely used for pat-
tern classification. With one or two hidden layers, it can
approximate virtually any input–output map. It has been
shown to approximate the performance of optimal statisti-
cal classifiers in difficult problems. Most neural network
applications involve MLP.

2.2. Competitive neural trees (CNeT)

Competitive neural trees (CNeT), developed by Behnke
and Karayiannis (1996, 1998), is one of the fast supervised
neural networks with high performance (see Fig. 1). A set
of similar nodes forms a tree as shown in Fig. 1a. Fig. 1b
shows a node in detail. Each node contains ‘m’ slots and
a counter which shows the node age and increases each
time an input pattern is presented to the node. The nodes
show different behavior when the counter age increases.
Each slot stores a prototype, counter ‘count’, and a poin-
ter. The prototypes represent clusters of the input patterns.
The counter ‘count’ increases each time the prototype is
updated to fit an input pattern. The pointer points to a
child-node assigned to a corresponding slot. A slot without
any child-node (empty pointer) is called ‘terminal slot’ or
‘leaf’. The internal slots are slots with an assigned child-
node.

The growth of the CNeT is based on inheritance for ini-
tializing new nodes and can be controlled by forward prun-
ing. CNeT applies unsupervised competitive learning in the
node level and clusters the input feature vectors hierarchi-
cally. The prototype similar to the input pattern can be
found by searching a part of the tree. Behnke and Karay-
iannis (1996, 1998) described different kinds of search
methods applicable for training as well as for testing.
2.3. Supervised fuzzy adaptive resonance theory (SF-ART)

The SF-ART, presented in Fig. 2, classifies input sam-
ples at two levels. At the first level, the pre-classifier classi-
fies the input samples primarily to M arbitrary classes. The
second level, the post-classifier, is a special array called
affine look-up table (ALT) with M elements. ALT stores



Fig. 2. Supervised fuzzy adaptive resonance theory (SF-ART) structure.
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the label (D with a value between 1 and N) of the corre-
sponding input sample in the address equal to the index
of the pre-classifier winner (j). In the final step, SF-ART
classifies the input dataset to N defined classes which
should be less than M. If N P M, using another stage
would be useless. In the testing mode, the content of an
ALT cell with address equal to the index of the pre-classi-
fier winner (j), which was saved during training mode, will
be read. The read value (y = D) is the class label to which
input data sample belongs.
2.3.1. Pre-classifier

This stage is used to classify the input samples to M

inner classes. Output of the pre-classifier is oj = Fj(X) where
F and j are function of the pre-classifier and index of the
pre-classifier winner, respectively. As pre-classifier, any
unsupervised/supervised classifiers such as neural network,
statistical or fuzzy classifier can be used. In the case of
supervised pre-classifier, the value of M must be set in
advance. For an unsupervised pre-classifier such as Hop-
field neural network, the pre-classifier will set the value of
M, in a self-organized process.
2.3.2. Affine look-up table (ALT)

ALT is an array with M cells which stores NT labels of
the corresponding input samples ðf1 6 Di 6 Ngi¼NT

i¼1 Þ in the
address equal to the index of the pre-classifier winner (j) in
the training mode. M, N(6M) and NT are number of the
inner classes, number of the final classes and number of
the training samples, respectively. If N P M, the classifier
will not work properly. In the testing mode, a cell with
address equal to the index of the pre-classifier winner
(j) will be called to pick a label (Dj) that was saved in
ALT during training mode. The read value (1 6 y =
ALT[j] 6 N) is the final output declaring the class label to
which input data belongs.
2.3.3. Adaptive resonance theory (ART) neural networks

As a pre-classifier, we can use the adaptive resonance
theory (ART) neural network which is a popular self-orga-
nized classification method (Carpenter and Grossberg,
1987; Frank et al., 1998; Heins and Tauritz, 1995; Sapozh-
nikova and Lunin, 2000). ART uses single prototypes to
internally represent and dynamically adapt clusters. It uses
a minimum required similarity between patterns that are
clustered within one cluster. The resulting number of clus-
ters then depends on the similarity between all input pat-
terns, presented to the network during the training cycles.
Some interesting features of ART and its capabilities have
led to its use in different applications in science and tech-
nology. As shown in Fig. 3, any kind of ART-network
can be characterized into three levels: pre-processing,
searching and adaptation. The pre-processing level tries
to create an array with a constant number of elements
using an input pattern. The format of this fixed size array
depends on the kind of ART network used. When an input
pattern is modified to a fixed format in the searching stage,
it is compared to the stored templates located in the centre



Fig. 3. Learning algorithm of an ART-network.
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of existing clusters. In adaptation level, the similarity
between best fitting template and the input data is checked.
If the degree of similarity between the current input pattern
and the best fitting template (J) is at least as high as vigi-
lance q (typically limited to the range [0,1]), this template
is chosen to represent the cluster containing the input.
The template is then adapted by shifting the template’s val-
ues towards the values of the input array. If similarity
between input pattern and best fitting template does not
fit into the vigilance interval [q, 1], a new cluster has to be
installed where the current input is most commonly used
as the first template or cluster centre. For detailed descrip-
tion of these levels, refer to (Akhbardeh, 2007).

The clustering performance of ART-networks is not well
documented in the literature, but Frank et al. (1998) con-
centrated on the comparative analysis of the clustering
properties and the performance of several variants of
ART-networks. The performance of any kind of classifier
depends not only on the network architecture and param-
eters, but also on the dimensionality and nature of the data
to be classified. All kinds of ART-networks are very sensi-
tive to the vigilance parameter rather than the nature and
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the dimension of the input data. This cause reduced reli-
ability of this net and decreases its popularity.
2.3.4. Fuzzy adaptive resonance theory (F-ART) neural

network

Among different kinds of ART-networks, the Fuzzy
ART (F-ART) network has better performance compared
to other kinds in the interpretation of a given dataset. It
uses the ‘fuzzy AND logic’ in the second level to find sim-
Fig. 4. Pattern recognition data sets used for evaluating SF-ART: (a) 2-D (pet
classes (Iris Setosa, Iris Versicolour, and Iris Virginica) and represent different
four classes (iy, ae, aa, uh) and represent different Vowel subspecies.
ilarity between input data sample and stored templates.
The above mentioned three levels for F-ART are described
in below:
2.3.4.1. Preprocessing step. Before doing any processing,
the input data must be normalized into the range [0,1].
One possible method is to use a Euclidean normalization.
But, it loses any information stored in the vector length of
an input pattern. To avoid this problem, a modified
al length–petal width) IRIS Data and its distribution which includes three
IRIS subspecies and (b) Vowels Data and its distribution which includes



Table 1
IRIS data classification to three classes using SF-ART, MLP, and CNeT
classifiers

Classifier Net parameters % OP NLC

SF-ART g = 1 and q ? 1 96.67 ± 1.06 6
CNeT ([11] & [12]) – 94.67 60
MLP with learning rate of

0.001 for all layers
One hidden layer:
Nh = 5

97.06 ± 1.65 1500
97.06 ± 1.65 3000

One hidden layer:
Nh = 10

96.26 ± 1.06 1500

Nh1 = 15,
Nh2 = 10

97.06 ± 1.06 1000

Nh1 = 20,
Nh2 = 10

96.53 ± 2.47 1000

OP means ‘overall performance (averaged)’ after k-fold (five times) cross
validation tests: ‘±’ shows a 95% confidence interval on the average per-
formance (mean). NLC means ‘number of learning cycles for training’.
g = learning factor, q = vigilance (similarity) parameter. Nh1,2 = Number
of neurons for hidden layers 1 and 2.

Table 2
Vowel data classification to four classes using SF-ART, and MLP
classifiers

Classifier Net parameters % OP NLC

SF-ART g = 1 and q ? 1 98.13 ± 0.45 5
MLP with learning rate of

0.001 for all layers
One hidden layer:
Nh = 5

96.23 ± 1.94 1500

One hidden layer:
Nh = 10

91.23 ± 3.29 500
97.07 ± 1.33 1000
97.01 ± 1.05 6000

Nh1 = 15,
Nh2 = 10

98.37 ± 0.58 2500

Nh1 = 20,
Nh2 = 10

98.11 ± 0.55 2500

OP means ‘overall performance (averaged)’ after k-fold (five times) cross
validation tests: ‘±’ shows a 95% confidence interval on the average per-
formance (mean). NLC means ‘number of learning cycles for training’.
g = learning factor, q = vigilance (similarity) parameter. Nh1 and
Nh2 = Number of neurons for hidden layers 1 and 2.
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normalization method called complement coding can be
applied (Frank et al., 1998). In this method original vector
IN = (a1,a2, . . . ,aL/2) can be coded into an input pattern
I = (i1, i2, . . . , iL) by adding its complements to the original
vector which doubles the dimension of input patterns:
I = (IN, INC) = (a1, . . . ,aL/2,1 � a1, . . . , 1 � aL/2), ai 2 [0, 1]
"i.

2.3.4.2. Search level. This level itself has two sublevels
which are described below.

(A) Choice step: neurons activity tj, can be computed
using formula tj ¼ jI^W jj

eþjW jj, where e is a small constant value
to avoid having infinitive tj when jWjj? 0. Symbol (^) is
fuzzy AND logic with definition as following:

P ^ Q ¼ ðp1 ^ q1; . . . ; pK ^ qKÞ;
p ^ q ¼ minfp; qg:

(B) Match step: To find similarity between input and
current winner template WJ, fuzzy AND logic can be
applied. Resonance occurs when q 6 jI^W J j

I . If similarity
between input pattern and best match template is not in
the range of [q, 1], a new cluster will be created and the cur-
rent input will be located in its center as the first template.
Else, if one of the previously established clusters fits with
the input pattern, it is adapted by small shifting of the tem-
plate’s values toward the values of the input array in the
next level.

2.3.4.3. Adaptation level. The winner template is adapted by
moving its values toward the common MIN vector of I and
WJ using formula WJ = g � (I ^WJ) + (1 � g) �WJ. where
g is learning factor. At the first step of running F-ART,
number of clusters is one (No = 1). The template W1 is ini-
tialized with a constant value wi1 = 1, 1 6 i 6 L. When new
cluster is established (No = No + 1), the template of it will
be set to all 1. It guarantees when best fitting template is
WNo, similarity between input pattern and it does not
belong to range [q, 1], and the new cluster must be estab-
lished (No = No + 1). If the best fitting template is not
WNo, then the fitting template must be adapted by shifting
the template’s value toward the values of modified input
array (I). In adaptation rule, the learning factor g 2 [0, 1]
defines the speed of convergence of templates to the com-
mon minimum of all input patterns assigned to the same
cluster. With g closely near to 1 the network will work in
fast learning mode (Frank et al., 1998) and convergence
will be occurred after a few presentations of all training
patterns. F-ART is too sensitive to the adjustment of sim-
ilarity parameter (q) and learning factor (g) which are typ-
ically limited to the range [0, 1]. By choosing the q closely
near to 1 the higher number of clusters will be established
than choosing q with small values. Controlling number of
produced clusters is not easy using q. This problem caused
reducing reliability of this unsupervised neural network
and decreasing application of it in different science and
technology fields.
SF-ART addresses to these problems. To store corre-
sponding labels of the input patterns in the ALT of SF-
ART with a high resolution, the best value for vigilance
parameter (q) is very close to 1. To converge SF-ART after
a few learning cycles (fast learning mode), the learning fac-
tor (g) must be set to 1. With these values SF-ART will be
an automatic classifier and free from any adjustment of net
parameters. The effects of q and g are discussed in the next
section.

3. Experimental results of SF-ART

This section evaluates the performance of SF-ART as
well as existing classifiers (MLP and CNeT) on a variety
of pattern classification problems.

3.1. The IRIS data set

The SF-ART algorithm was tested using Anderson’s
IRIS data set (Anderson, 1939), which has been used exten-



1088 A. Akhbardeh et al. / Pattern Recognition Letters 29 (2008) 1082–1093
sively for evaluating the performance of pattern classifica-
tion algorithms. This data set contains 150 samples of
dimension four that are sepal width, sepal length, petal
width, and petal length. These samples can be divided
in three classes (Iris Setosa, Iris Versicolour, and Iris
Virginica) representing different IRIS subspecies. Setosa
class is far from the other two, which have overlap of their
features. Fig. 4a shows IRIS dataset in terms of two dimen-
sions (sepal length and petal width) out of four. The 150
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Fig. 5. SFART Performance variances over (a) different vigilance (q: similari
learning factor (g) with vigilance (q) near to 1. The examples for training and
samples were randomly split into two sets of 75 samples
to obtain training and testing sets. SF-ART was trained
with the training set and its ability was evaluated using
the testing set.

As comparison, Table 1 shows the performance of SF-
ART, MLP and CNeT. SF-ART performed well on the
training as well as testing sets. All tests were done on a
computer with a 3 GHz Pentium 4 microprocessor. The
classification performance was averaged after k-fold
0.9 0.92 0.94 0.96 0.98 1

ce parameter with etta=1 (Fast Learning mode)

larity) parameter

0.9 0.92 0.94 0.96 0.98 1

ing factor with vigilance parameter near to 1

actor (etta)

ty) parameter with constant learning factor (g) near to 1 and (b) different
testing classifiers are selected randomly to learn the patterns correctly.
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(k = 5) cross validation tests. The ‘±’ indicates 95% confi-
dence interval on the average performance (mean). For
MLP, we found that two hidden layers with 15 and 10 neu-
rons and 1000 iterations of the training data set had the
best performance (97.06 ± 1.06) with the testing set
(elapsed time: 2.8 s). The SF-ART with g = 1 and vigilance
q = 0.999 had a high performance (96.67 ± 1.06) with the
testing set and convergence occurred after only six itera-
tions (elapsed time: 0.03 s). Referring to the Table 1, max-
imum classification performance was 98.71 and 97.73,
respectively for MLP (One hidden layer: Nh = 5) and SF-
ART. The class ‘Setosa’ is linearly separable from other
two classes. However, classes ‘Virgincia’ and ‘Versacolour’
in some kernel spaces seem to be separable.

Referring to the results obtained for CNet (Behnke and
Karayiannis, 1996, 1998), after almost 60 adaptation
cycles, the number of incorrect classification (above four
features) with the training set remained almost constant
with some fluctuations. The number of classification errors
(above two features) with the training set reduced further
as the tree kept growing. This is an indication of overtrain-
ing, which can be avoided by using the testing-set stopping
criterion to terminate the training. Overall, the perfor-
mance of CNeT in the best situations was above 94.67%
on the testing set (Behnke and Karayiannis, 1996, 1998).
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Fig. 6. MLP and SFART performance variances over a different number of tra
were chosen near to 1. Also, for MLP with two hidden layers, numbers of neur
and testing classifiers are selected randomly to learn the patterns correctly. Th
It must be mentioned that IRIS data is designed in such
a way that we cannot reduce training data size and half
of the data set must be used for training and the rest of
the data for testing the classifier.

3.2. The vowel data set

Another pattern recognition problem used to check the
performance of SF-ART is a set of 2-D vowel data (608
samples). The samples belong to four classes which are:
‘‘IY” as in ‘‘eat”, ‘‘AE” as in ‘‘at”, ‘‘AA” as in ”odd”,
and ‘‘UH” as in ‘‘two” (Behnke and Karayiannis, 1996,
1998). Fig. 4b shows vowel formant (a characteristic com-
ponent of the quality of a speech sound) data for two
repetitions of four vowels by 76 speakers. Formants corre-
spond to resonant frequencies of the vocal tract. Vowel
data set is a popular data to evaluate pattern classification
methods while there are overlaps between three classes. The
608 samples were split into a training set (300 samples) and
a testing set (308 samples).

Table 2 shows the comparative analyses and perfor-
mance of SF-ART, and Multi layer perceptrons (MLP)
applied for the classification of vowel data into four classes.
The classification performance was averaged after
k-fold (k = 5) cross validation tests. The ‘±’ indicates
200 250 300

different number of training examples

 Examples

ining examples. For SFART learning factor (g) and vigilance (q: similarity)
ons in hidden layers were Nh1 = 15, Nh2 = 10. The examples for training
e training and testing data sets were the same for MLP and SF-ART.



Table 3
Ten classes’ vowel data classification using CNeT, MLP, and k-NN
classifiers (Behnke and Karayiannis, 1996, 1998)

Classifier Net parameters % OP

CNeT – 82.04
k-NN – 75.45
MLP 5 Hidden units 76.58

10 Hidden units 80.18

OP means ‘overall performance’.
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95% confidence interval on the average performance
(mean). All tests were done on a 3 GHz Pentium 4
computer.

Using MLP having two hidden layers, the convergence
during training occurred after 2500 iterations; and it had
a performance of 98.37 ± 0.58 with testing dataset. Elapsed
time for learning was 3.2, 5.4, 26.7 and 34.3 s, respectively,
for the MLP with Nh = 5, Nh = 10, (Nh1 = 15 and
Nh2 = 10), and (Nh1 = 20 and Nh2 = 10) structures.

However the SF-ART, with g and q close to 1, needed
only five learning cycles (250 ms) to achieve similar perfor-
mance (98.13 ± 0.45) with the test dataset. Fig. 5a indicates
the performance variances of SF-ART across different val-
ues for vigilance parameter (q) when the learning factor is
constant (g = 1). Fig. 5b indicates the performance vari-
ances of SF-ART for different values of learning factor
(g) when vigilance parameter (q) is constant. Fig. 6 indi-
cates the effects of training samples on the performance
of SF-ART and MLP. As can be seen from Fig. 6, even
using a small amount of the training samples, SF-ART is
more stable than MLP across different volumes of training
samples. However, in SF-ART the network capacity for
generalization slightly decreased (small fluctuation between
97.8% and 98.5%) if more than 200 examples (30% of vow-
els data) were used to train SF-ART. MLP seems to be
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Fig. 7. MLP and SF-ART performance variances over a different number of l
vigilance (q: similarity) were chosen near to 1. As SF-ART stops automatically (
MLP with two hidden layers, the numbers of neurons in hidden layers were N
selected randomly to learn the patterns efficiently.
slightly more stable than SF-ART as can be seen from
Tables 1 and 2. MLP has a lower confidence interval over
mean classification performance.

Behnke and Karayiannis (1996, 1998) used their own
2-D vowel data with ten classes, instead of the four classes
that we used, to evaluate CNeT performance. The ten
vowel classes which they used came from: ‘‘head”, ‘‘hid”,
‘‘hod”, ‘‘had”, ‘‘hawed”, ‘‘heard”, ‘‘heed”, ‘‘hud”,
‘‘who’d”, and ‘‘hood”. The available 608 feature vectors
were divided into a training set, containing 300 vectors,
and a testing set, containing 308. They compared CNeT
performance with other existing methods such as K-Near-
est Neighbor (K-NN) classifier and MLP with five and ten
hidden units trained using gradient descent. The classifica-
00 6000 7000 8000 9000 10000

rent number of training examples

Examples

earning cycles during training mode. For SF-ART learning factor (g) and
after five adaptation cycles), we have only one point for SF-ART. Also, for
h1 = 15, Nh2 = 10. The examples for training and testing classifiers were
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tion performance for CNeT, K-NN, and MLP with five
hidden units and ten hidden units, were 82.04%, 75.45%,
76.58% and 80.18% for the testing set, respectively
(Table 3). As can be seen the CNeT had better performance
than MLP and K-NN to classify vowel data to ten classes
and learnt faster. But it needed more than 60 learning
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Fig. 8. 3-D Representation of three out of nine features of 150 H2 samples
respectively and (b) features 5, 6, 8: ethanol, acetate, butyrate, respectively.
cycles to converge on the training set with some fluctua-
tions in the number of incorrect classifications. CNeT is a
heavy algorithm and the time required for training is high
compared to SF-ART.

In another test, we compared the number of learning
cycles and its effects on the performance of existing
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Table 4
H2 data classification to four classes using SF-ART, and MLP classifiers

Classifier Net parameters % OP NLC

SF-ART g = 1 and q ? 1 98.40 ± 1.50 5
MLP with learning rate of

0.001 for all layers
One hidden layer:
Nh = 15

98.60 ± 1.20 1500

One hidden layer:
Nh = 10

96.80 ± 1.49 1500

Nh1 = 15,
Nh2 = 10

97.40 ± 2.35 2000

Nh1 = 20,
Nh2 = 10

96.20 ± 1.74 2000

OP means ‘overall performance (averaged)’ after k-fold (five times) cross
validation tests: ‘±’ shows a 95% confidence interval on the average per-
formance (mean). NLC means ‘number of learning cycles for training’.
g = learning factor, q = vigilance (similarity) parameter. Nh1 and
Nh2 = Number of neurons for hidden layers 1 and 2.
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supervised neural networks such as MLP (see Fig. 7). In
most cases, neural networks need the adjustment of a
stopping criterion in the training mode using mean
square error, a manual limit or other kinds of criteria.
However, SF-ART is free from any adjustment of the
stopping criterion because it stops automatically after a
resonance occurrence in the training mode. The conver-
gence was done very fast (after five learning cycles for
the vowel data set) because SF-ART uses the fast learn-
ing mode of F-ART. Therefore, in Fig. 7, there is only
one point with position (iteration number = 5, perfor-
mance = 98.38%) in the figure for SF-ART. This ability
helps SF-ART to be a fully automatic neural network
based classifier.

3.3. Hydrogen (H2) data set

The classification performance of above mentioned clas-
sifiers was analyzed and compared on a biological (H2)
dataset. In this study, our aim was the evaluation of the
SF-ART from a methodological point of view of using
H2 data.

The H2 dataset consisted of nine dimensions (Hydraulic
retention time, H2 production rates, CO2 production rates,
pH, acetate, ethanol, butyrate, valerate and propionate)
and 150 samples. The dataset consists of four class labels.
These class labels were given after analyzing the metabolic
profile of each sample. The idea of using such dataset for
comparative analyses of other computational methods
was to find out whether other methods are also able to
group data into similar clusters.

The dataset was obtained by monitoring the hydrogen
producing bioreactor. An anaerobic, completely mixed bio-
reactor (total volume 0.8 l, height to diameter ratio 7.7)
with a gas extraction module was used for H2 production
at 35 �C. Bioreactor was operated continuously for 156
days and reactor performance was determined by measur-
ing gaseous and soluble end products, glucose degradation
and biomass concentrations.
Fig. 8 shows H2 dataset in terms of three dimensions out
of nine. The 150 samples were randomly split into two sets
of 75 samples to obtain training and testing sets.

As a comparison, Table 4 shows the performance of SF-
ART and MLP. SF-ART performed well on the training as
well as testing sets. All tests were done on the computer
with a 3 GHz Pentium 4 microprocessor. The classification
performance was averaged after k-fold (k = 5) cross valida-
tion tests. The ‘±’ indicates 95% confidence interval on the
average performance (mean). For MLP, we found that one
hidden layer with 15 neurons and 1500 iterations of the
training data set had the best performance (98.60 ± 1.20)
with the testing set (elapsed time: 3 s). The SF-ART with
learning parameter (g = 1) and vigilance parameter
(q = 0.999) had a high performance (98.40 ± 1.50) with
the testing set. The convergence occurred after only six iter-
ations (elapsed time: 0.08 s). Referring to the Table 4, max-
imum classification performance was 100%, respectively for
MLP (One hidden layer: Nh = 15) and SF-ART.
4. Conclusions

In this paper, we presented a new pattern recognition
method (SF-ART) with a higher learning speed, a lower
computational load, higher performance, and fewer param-
eters to adjust compared to classical methods. The results
indicated that SF-ART learned patterns (of two well-
known datasets, IRIS, Vowel) very fast, in less than 1 s
for SF-ART. For comparison, MLP and CNeT needed sec-
onds to train. We also tested SF-ART using H2 dataset.
Classifiers, except SF-ART, were sensitive to the volume
of the training set as well as the number of adaptation
cycles during training mode. They also suffer from trade-
offs between learning speed and performance. Moreover,
the results showed that SF-ART learnt patterns with a
lower amount of training samples. When the shortest pos-
sible training time is important and slightly lower classifica-
tion performance is allowed, SF-ART can be
recommended. One interesting benefit of SF-ART can be
incremental learning when new data become available
(on-line learning). This capability has not yet been fully
explored. Therefore, in future SF-ART should be applied
in classification of more patterns, especially testing its reli-
ability, stability and performance for on-line (incremental)
learning.
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